96 research outputs found

    Distribution-Independent Evolvability of Linear Threshold Functions

    Full text link
    Valiant's (2007) model of evolvability models the evolutionary process of acquiring useful functionality as a restricted form of learning from random examples. Linear threshold functions and their various subclasses, such as conjunctions and decision lists, play a fundamental role in learning theory and hence their evolvability has been the primary focus of research on Valiant's framework (2007). One of the main open problems regarding the model is whether conjunctions are evolvable distribution-independently (Feldman and Valiant, 2008). We show that the answer is negative. Our proof is based on a new combinatorial parameter of a concept class that lower-bounds the complexity of learning from correlations. We contrast the lower bound with a proof that linear threshold functions having a non-negligible margin on the data points are evolvable distribution-independently via a simple mutation algorithm. Our algorithm relies on a non-linear loss function being used to select the hypotheses instead of 0-1 loss in Valiant's (2007) original definition. The proof of evolvability requires that the loss function satisfies several mild conditions that are, for example, satisfied by the quadratic loss function studied in several other works (Michael, 2007; Feldman, 2009; Valiant, 2010). An important property of our evolution algorithm is monotonicity, that is the algorithm guarantees evolvability without any decreases in performance. Previously, monotone evolvability was only shown for conjunctions with quadratic loss (Feldman, 2009) or when the distribution on the domain is severely restricted (Michael, 2007; Feldman, 2009; Kanade et al., 2010

    Learning DNF Expressions from Fourier Spectrum

    Full text link
    Since its introduction by Valiant in 1984, PAC learning of DNF expressions remains one of the central problems in learning theory. We consider this problem in the setting where the underlying distribution is uniform, or more generally, a product distribution. Kalai, Samorodnitsky and Teng (2009) showed that in this setting a DNF expression can be efficiently approximated from its "heavy" low-degree Fourier coefficients alone. This is in contrast to previous approaches where boosting was used and thus Fourier coefficients of the target function modified by various distributions were needed. This property is crucial for learning of DNF expressions over smoothed product distributions, a learning model introduced by Kalai et al. (2009) and inspired by the seminal smoothed analysis model of Spielman and Teng (2001). We introduce a new approach to learning (or approximating) a polynomial threshold functions which is based on creating a function with range [-1,1] that approximately agrees with the unknown function on low-degree Fourier coefficients. We then describe conditions under which this is sufficient for learning polynomial threshold functions. Our approach yields a new, simple algorithm for approximating any polynomial-size DNF expression from its "heavy" low-degree Fourier coefficients alone. Our algorithm greatly simplifies the proof of learnability of DNF expressions over smoothed product distributions. We also describe an application of our algorithm to learning monotone DNF expressions over product distributions. Building on the work of Servedio (2001), we give an algorithm that runs in time \poly((s \cdot \log{(s/\eps)})^{\log{(s/\eps)}}, n), where ss is the size of the target DNF expression and \eps is the accuracy. This improves on \poly((s \cdot \log{(ns/\eps)})^{\log{(s/\eps)} \cdot \log{(1/\eps)}}, n) bound of Servedio (2001).Comment: Appears in Conference on Learning Theory (COLT) 201

    A Complete Characterization of Statistical Query Learning with Applications to Evolvability

    Get PDF
    Statistical query (SQ) learning model of Kearns (1993) is a natural restriction of the PAC learning model in which a learning algorithm is allowed to obtain estimates of statistical properties of the examples but cannot see the examples themselves. We describe a new and simple characterization of the query complexity of learning in the SQ learning model. Unlike the previously known bounds on SQ learning our characterization preserves the accuracy and the efficiency of learning. The preservation of accuracy implies that that our characterization gives the first characterization of SQ learning in the agnostic learning framework. The preservation of efficiency is achieved using a new boosting technique and allows us to derive a new approach to the design of evolutionary algorithms in Valiant's (2006) model of evolvability. We use this approach to demonstrate the existence of a large class of monotone evolutionary learning algorithms based on square loss performance estimation. These results differ significantly from the few known evolutionary algorithms and give evidence that evolvability in Valiant's model is a more versatile phenomenon than there had been previous reason to suspect.Comment: Simplified Lemma 3.8 and it's application

    Sample Complexity Bounds on Differentially Private Learning via Communication Complexity

    Full text link
    In this work we analyze the sample complexity of classification by differentially private algorithms. Differential privacy is a strong and well-studied notion of privacy introduced by Dwork et al. (2006) that ensures that the output of an algorithm leaks little information about the data point provided by any of the participating individuals. Sample complexity of private PAC and agnostic learning was studied in a number of prior works starting with (Kasiviswanathan et al., 2008) but a number of basic questions still remain open, most notably whether learning with privacy requires more samples than learning without privacy. We show that the sample complexity of learning with (pure) differential privacy can be arbitrarily higher than the sample complexity of learning without the privacy constraint or the sample complexity of learning with approximate differential privacy. Our second contribution and the main tool is an equivalence between the sample complexity of (pure) differentially private learning of a concept class CC (or SCDP(C)SCDP(C)) and the randomized one-way communication complexity of the evaluation problem for concepts from CC. Using this equivalence we prove the following bounds: 1. SCDP(C)=Ω(LDim(C))SCDP(C) = \Omega(LDim(C)), where LDim(C)LDim(C) is the Littlestone's (1987) dimension characterizing the number of mistakes in the online-mistake-bound learning model. Known bounds on LDim(C)LDim(C) then imply that SCDP(C)SCDP(C) can be much higher than the VC-dimension of CC. 2. For any tt, there exists a class CC such that LDim(C)=2LDim(C)=2 but SCDP(C)tSCDP(C) \geq t. 3. For any tt, there exists a class CC such that the sample complexity of (pure) α\alpha-differentially private PAC learning is Ω(t/α)\Omega(t/\alpha) but the sample complexity of the relaxed (α,β)(\alpha,\beta)-differentially private PAC learning is O(log(1/β)/α)O(\log(1/\beta)/\alpha). This resolves an open problem of Beimel et al. (2013b).Comment: Extended abstract appears in Conference on Learning Theory (COLT) 201

    Optimal Bounds on Approximation of Submodular and XOS Functions by Juntas

    Full text link
    We investigate the approximability of several classes of real-valued functions by functions of a small number of variables ({\em juntas}). Our main results are tight bounds on the number of variables required to approximate a function f:{0,1}n[0,1]f:\{0,1\}^n \rightarrow [0,1] within 2\ell_2-error ϵ\epsilon over the uniform distribution: 1. If ff is submodular, then it is ϵ\epsilon-close to a function of O(1ϵ2log1ϵ)O(\frac{1}{\epsilon^2} \log \frac{1}{\epsilon}) variables. This is an exponential improvement over previously known results. We note that Ω(1ϵ2)\Omega(\frac{1}{\epsilon^2}) variables are necessary even for linear functions. 2. If ff is fractionally subadditive (XOS) it is ϵ\epsilon-close to a function of 2O(1/ϵ2)2^{O(1/\epsilon^2)} variables. This result holds for all functions with low total 1\ell_1-influence and is a real-valued analogue of Friedgut's theorem for boolean functions. We show that 2Ω(1/ϵ)2^{\Omega(1/\epsilon)} variables are necessary even for XOS functions. As applications of these results, we provide learning algorithms over the uniform distribution. For XOS functions, we give a PAC learning algorithm that runs in time 2poly(1/ϵ)poly(n)2^{poly(1/\epsilon)} poly(n). For submodular functions we give an algorithm in the more demanding PMAC learning model (Balcan and Harvey, 2011) which requires a multiplicative 1+γ1+\gamma factor approximation with probability at least 1ϵ1-\epsilon over the target distribution. Our uniform distribution algorithm runs in time 2poly(1/(γϵ))poly(n)2^{poly(1/(\gamma\epsilon))} poly(n). This is the first algorithm in the PMAC model that over the uniform distribution can achieve a constant approximation factor arbitrarily close to 1 for all submodular functions. As follows from the lower bounds in (Feldman et al., 2013) both of these algorithms are close to optimal. We also give applications for proper learning, testing and agnostic learning with value queries of these classes.Comment: Extended abstract appears in proceedings of FOCS 201

    Agnostic Learning of Disjunctions on Symmetric Distributions

    Full text link
    We consider the problem of approximating and learning disjunctions (or equivalently, conjunctions) on symmetric distributions over {0,1}n\{0,1\}^n. Symmetric distributions are distributions whose PDF is invariant under any permutation of the variables. We give a simple proof that for every symmetric distribution D\mathcal{D}, there exists a set of nO(log(1/ϵ))n^{O(\log{(1/\epsilon)})} functions S\mathcal{S}, such that for every disjunction cc, there is function pp, expressible as a linear combination of functions in S\mathcal{S}, such that pp ϵ\epsilon-approximates cc in 1\ell_1 distance on D\mathcal{D} or ExD[c(x)p(x)]ϵ\mathbf{E}_{x \sim \mathcal{D}}[ |c(x)-p(x)|] \leq \epsilon. This directly gives an agnostic learning algorithm for disjunctions on symmetric distributions that runs in time nO(log(1/ϵ))n^{O( \log{(1/\epsilon)})}. The best known previous bound is nO(1/ϵ4)n^{O(1/\epsilon^4)} and follows from approximation of the more general class of halfspaces (Wimmer, 2010). We also show that there exists a symmetric distribution D\mathcal{D}, such that the minimum degree of a polynomial that 1/31/3-approximates the disjunction of all nn variables is 1\ell_1 distance on D\mathcal{D} is Ω(n)\Omega( \sqrt{n}). Therefore the learning result above cannot be achieved via 1\ell_1-regression with a polynomial basis used in most other agnostic learning algorithms. Our technique also gives a simple proof that for any product distribution D\mathcal{D} and every disjunction cc, there exists a polynomial pp of degree O(log(1/ϵ))O(\log{(1/\epsilon)}) such that pp ϵ\epsilon-approximates cc in 1\ell_1 distance on D\mathcal{D}. This was first proved by Blais et al. (2008) via a more involved argument

    Learning Coverage Functions and Private Release of Marginals

    Full text link
    We study the problem of approximating and learning coverage functions. A function c:2[n]R+c: 2^{[n]} \rightarrow \mathbf{R}^{+} is a coverage function, if there exists a universe UU with non-negative weights w(u)w(u) for each uUu \in U and subsets A1,A2,,AnA_1, A_2, \ldots, A_n of UU such that c(S)=uiSAiw(u)c(S) = \sum_{u \in \cup_{i \in S} A_i} w(u). Alternatively, coverage functions can be described as non-negative linear combinations of monotone disjunctions. They are a natural subclass of submodular functions and arise in a number of applications. We give an algorithm that for any γ,δ>0\gamma,\delta>0, given random and uniform examples of an unknown coverage function cc, finds a function hh that approximates cc within factor 1+γ1+\gamma on all but δ\delta-fraction of the points in time poly(n,1/γ,1/δ)poly(n,1/\gamma,1/\delta). This is the first fully-polynomial algorithm for learning an interesting class of functions in the demanding PMAC model of Balcan and Harvey (2011). Our algorithms are based on several new structural properties of coverage functions. Using the results in (Feldman and Kothari, 2014), we also show that coverage functions are learnable agnostically with excess 1\ell_1-error ϵ\epsilon over all product and symmetric distributions in time nlog(1/ϵ)n^{\log(1/\epsilon)}. In contrast, we show that, without assumptions on the distribution, learning coverage functions is at least as hard as learning polynomial-size disjoint DNF formulas, a class of functions for which the best known algorithm runs in time 2O~(n1/3)2^{\tilde{O}(n^{1/3})} (Klivans and Servedio, 2004). As an application of our learning results, we give simple differentially-private algorithms for releasing monotone conjunction counting queries with low average error. In particular, for any knk \leq n, we obtain private release of kk-way marginals with average error αˉ\bar{\alpha} in time nO(log(1/αˉ))n^{O(\log(1/\bar{\alpha}))}
    corecore